全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
407 0
2017-12-27
摘要:提出了应用混合GN(Gauss-Newton)-BFGS(Broyden-Fletcher-Goldfarb-Shanno)法进行RBF(径向基函数)神经网络学习的算法。这种方法结合GN法与BFGS法的特点,既尽可能地利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率,因此有效地提高了学习效率。在学习过程中,利用该方法能够区分零残量和非零残量,并利用这种特点进行隐层神经元数目的自动调整,从而可以保证神经网络的学习能力和推广能力。多个实际电网的负荷预测结果表明,该方法同神经网络的其他算法相比,具有训练时间短、预测精度高的特点。

原文链接:http://www.cqvip.com//QK/91993X/200304/7391046.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群