全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1221 0
2017-12-28
摘要:作为一个十余年来快速发展的崭新领域,深度学习受到了越来越多研究者的关注,它在特征提取和建模上都有着相较于浅层模型显然的优势.深度学习善于从原始输入数据中挖掘越来越抽象的特征表示,而这些表示具有良好的泛化能力.它克服了过去人工智能中被认为难以解决的一些问题.且随着训练数据集数量的显著增长以及芯片处理能力的剧增,它在目标检测和计算机视觉、自然语言处理、语音识别和语义分析等领域成效卓然,因此也促进了人工智能的发展.深度学习是包含多级非线性变换的层级机器学习方法,深层神经网络是目前的主要形式,其神经元间的连接模式受启发于动物视觉皮层组织,而卷积神经网络则是其中一种经典而广泛应用的结构.卷积神经网络的局部连接、权值共享及池化操作等特性使之可以有效地降低网络的复杂度,减少训练参数的数目,使模型对平移、扭曲、缩放具有一定程度的不变性,并具有强鲁棒性和容错能力,且也易于训练和优化.基于这些优越的特性,它在各种信号和信息处理任务中的性能优于标准的全连接神经网络.该文首先概述了卷积神经网络的发展历史,然后分别描述了神经元模型、多层感知器的结构.接着,详细分析了卷积神经网络的结构,包括卷积层、池化层、全连接层,它们发挥着不同的作用.然后,讨论了网中网模型、空间变换网络等改进的卷积神经网络.同时,还分别介绍了卷积神经网络的监督学习、无监督学习训练方法以及一些常用的开源工具.此外,该文以图像分类、人脸识别、音频检索、心电图分类及目标检测等为例,对卷积神经网络的应用作了归纳.卷积神经网络与递归神经网络的集成是一个途径.为了给读者以尽可能多的借鉴,该文还设计并试验了不同参数及不同深度的卷积神经网络来分析各参数间的相互关

原文链接:http://www.cqvip.com//QK/90818X/201706/672384401.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群