全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
646 0
2017-12-29
摘要:跨领域文本情感分类已成为自然语言处理领域的一个研究热点。针对传统主动学习不能利用领域间的相关信息以及词袋模型不能过滤与情感分类无关的词语,提出了一种基于逐步优化分类模型的跨领域文本情感分类方法。首先选择源领域和目标领域的公共情感词作为特征,在源领域上训练分类模型,再对目标领域进行初始类别标注,选择高置信度的文本作为分类模型的初始种子样本。为了加快目标领域的分类模型的优化速度,在每次迭代时,选取低置信度的文本供专家标注,将标注的结果与高置信度文本共同加入训练集,再根据情感词典、评价词搭配抽取规则以及辅助特征词从训练集中动态抽取特征集。实验结果表明,该方法不仅有效地改善了跨领域情感分类效果,而且在一定程度上降低了人工标注样本的代价。

原文链接:http://www.cqvip.com//QK/92817X/201607/669639809.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群