摘要:实例选择能有效移除数据中的噪声和冗余数据,但现有方法难以在提高泛化能力的同时实现约简。针对该问题,提出一种冗余实例对消除算法用于实例选择。给出最近同类实例对的概念,计算数据集中存在的最近同类实例对,并移除满足条件的实例,在11个不同数据集上进行的仿真实验结果表明,经过该算法处理后的数据集在分类准确率和存储压缩率上较原始样本集有明显提升。对比剪辑最近邻规则算法,该算法能够在保持分类准确率的同时提高平均存储压缩率35%以上,并完整保留原始样本集的数据分布特征,在分类准确率和存储压缩率上取得折中。
原文链接:http://www.cqvip.com//QK/95200X/201401/48356030.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)