摘要:探索用高维输入的
神经网络对复杂工业生产过程的建模方法。针对网络输入变量维数较高的特点,提出一种BP网络各权重独立训练的分散训练方法。该方法用附加大惯性项来协调各个权重的优化训练,运用非线性优化方法调节步长。与用普通的BP训练方法相比,用该方法训练高维输入的BP网络具有较快的收敛速度和较高的模型精度,较好地解决了实际生产过程的产品质量模型问题。
原文链接:http://www.cqvip.com//QK/91549X/200005/4688788.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)