摘要:针对神经网络集成增量学习中集成输出投票权值的设定问题,给出了一种投票权值调整的神经网络集成增量学习方法。该方法定义了神经网络集成中子神经网络训练集的类核函数,通过计算待识样本与类核函数之间的核函数距离得到集成输出中子神经网络的投票权值。这种投票权值没定办法可以根据子神经网络分类器对待识样本的分类性能自适应地调整集成输出的投票权值,是一种更加合理的集成输出投票权值没定方法。仿真实验表明,这种投票权值调整的
神经网络集成增量学习方法比投票权值旧定的方法增锓学习性能更优。
原文链接:http://www.cqvip.com//QK/92416X/201001/33078736.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)