摘要:机器学习的应用中,通常存在大量的未标记示例,对这些数据进行标记是昂贵和耗时的。与传统的监督学习不同,基于无标记数据的学习能同时在少量的已标记数据和大量的未标记数据上进行学习,从而提高学习的性能,已成为目前
机器学习领域中的一个研究热点。分析了基于无标记数据的学习适用基于内容的图像检索的原因,并阐述了相关研究的进展情况。
原文链接:http://www.cqvip.com//QK/90453A/201303/45259468.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)