摘要:文献数据的自动化分类,将在数字图书馆中占据越来越重要的地位。一般采用基于支持向量机的核方法,在标准测试集合上进行文献数据分类,具有某些不足。该方法存在文献向量规模庞大、核函数非正交且多义、重现率计算耗时等缺陷;不使用数字图书馆的真实数据测试,算法的实际说服力不强。为了解决这些问题,采用词汇扩展对文献向量进行预处理,得到少而精、正交无歧义的新文献向量;对文献向量按照语义排序,提高访问和计算速度;借助小波核将文献映射到L2空间进行文献分类。采用中国学术期刊网的真实分类数据,从摘要信息和全文文献两个角度进行验证,结果表明该方法优于核方法,具有一定的理论研究和实际应用价值。
原文链接:http://www.cqvip.com//QK/95888X/201309/47257800.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)