摘要:支持向量机(SVM)是建立在统计学理论基础上的一种小样本
机器学习方法,最初应用于解决两类分类问题.然而在解决实际问题中遇到的多为多分类问题,如何有效的将其推广到多类分类问题是一个正在研究的问题.该文对现有的多类支持向量机方法从组合多个两类分类器、层次结构、一次性优化问题和纠错编码等4个角度进行了综合归纳和分析,详细介绍了每种方法的代表性算法,并比较其优劣.
原文链接:http://www.cqvip.com//QK/92035A/200702/24455036.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)