摘要:分类能力是人类经过学习得到的重要而基本的能力,也是
机器学习、模式识别和数据采掘研究的核心问题.在0-1损失率下,证明了基于类约束的贝叶斯网络分类器是最优分类器.建立该分类器的核心问题是基于类约束属性贝叶斯网络结构学习,给出了学习属性贝叶斯网络结构的方法,在学习过程中使用了根据弧方向因果语义确定边方向的方法,并和碰撞识别定向相结合,在边定向之后进行冗余弧检验,解决了目前冗余边检验在定向之前所导致的问题,显著提高了结构学习效率和准确性.并使用模拟数据进行了分类实验和分析.
原文链接:http://www.cqvip.com//QK/95659X/200406/10283464.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)