摘要:非线性流形学习以保持数据局部结构的方式将高维输入投影到低维空间,发现隐藏在数据中的内在几何结构与规律性,是近年来
机器学习与认知科学中一个新的研究热点.文中分析了几种主要的流形学习方法,通过比较给出各方法的优缺点;提出了基于谱分析的非线性降维的统一框架,对于流形学习方法的研究具有重要意义;给出了手写数字和人脸图像序列等降维的实验结果,显示了非线性流形学习在数据约简和可视化方面的有效应用;最后结合作者的研究探索,总结了非线性流形学习需要解决的问题并展望其研究趋势.
原文链接:http://www.cqvip.com//QK/96531A/200708/25177325.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)