摘要:针对传统神经网络学习算法速度慢、容易陷入局部最优解的缺点,将卡尔曼滤波应用于人工神经网络的训练算法中.同时,在卡尔曼滤波计算中,将奇异值分解应用于卡尔曼滤波的递推公式中,提高了协方差阵计算的数值稳定性.最后,本文通过将
神经网络的卡尔曼滤波算法应用于电力系统短期负荷预测中,验证了该方法不仅具有理论意义,同时也有实用价值.
原文链接:http://www.cqvip.com//QK/93977A/200502/12042857.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)