摘要:SVM是一种新型的
机器学习方法,其分类性能的优劣主要受核函数及核参数的影响,国内外学者针对SVM核参数的选择已提出许多算法.本文首先分析TRBF核参数对SVM分类性能的影响,然后又对比分析了目前存在的几种基于RBF核的SVM核参数选择方法.通过实验,发现使用遗传算法选择核参数的SVM有比较快的搜索速度.
原文链接:http://www.cqvip.com//QK/90999X/200903/31113240.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)