全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
741 0
2018-02-08
摘要:针对I-SVM算法在文本分类中训练时间较长和分类效率低的问题,提出了一种基于支持向量(SV)阀值控制的优化I-SVM算法(TI-SVM)。由于在增量训练样本集中存在大量的非SV,TI-SVM算法根据历史训练模型和KKT条件对新增样本集和历史样本集进行预处理,剔除大部分的非SV,根据预处理后的样本集进行训练新的SVM模型,利用文本的相似度和预设SV的阀值对模型中的冗余SV进一步处理,以提高分类性能。经过对一组客户新闻分类的实验表明,该算法在保证分类精度的同时有效提高了模型的训练和分类效率。http://www.cqvip.com//QK/91690X/201503/664020885.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群