全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
692 0
2018-01-10
摘要:如何有效利用海量的数据是当前机器学习面临的一个重要任务,传统的支持向量机是一种有监督的学习方法,需要大量有标记的样本进行训练,然而有标记样本的数量是十分有限的并且非常不易获取。结合Co-training算法与Tri-training算法的思想,给出了一种半监督SVM分类方法。该方法采用两个不同参数的SVM分类器对无标记样本进行标记,选取置信度高的样本加入到已标记样本集中。理论分析和计算机仿真结果都表明,文中算法能有效利用大量的无标记样本,并且无标记样本的加入能有效提高分类的正确率。

原文链接:http://www.cqvip.com//QK/97969A/201010/35501767.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群