摘要:支持向量机是一种新型的学习方法,该方法以结构风险最小化原则取代传统机器学习中的经验风险最小化原则,在小样本的
机器学习中显示出了优异的性能.传统的支持向量机是解凸二次规划问题,而最小二乘支持向量机是解等式线性方程,显得尤为方便,通过建立适当的性能指标,用遗传算法优化最小二乘支持向量机的有关参数,并在非线性经济系统中应用.用最小二乘支持向量机对非线性经济系统进行预测并与其它方法的预测结果比较,结果证明,该模型的预测精确度是令人满意的,文中提出的方法是可行的.
原文链接:http://www.cqvip.com//QK/96188X/200902/30174307.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)