全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
425 0
2018-01-13
摘要:目的将最小二乘支持向量机引入心音的分类识别,优化其参数设置,获得最优的分类结果。方法本文通过医院采集和网络下载获得99例心音信号,每个信号提取两个长度为5s的样本,共198个样本,均分为3个集合。对每个样本采用sym6小波基进行小波包3层分解,根据Parseval定理计算每个样本的能量谱特征。以训练集数据送入支持向量机和最小二乘支持向量机进行机器学习,采用不同步长相结合的搜索法,根据测试集1的分类结果对向量机的参数进行优化。结果以高斯径向基函数为核的支持向量机,其惩罚因子C和核函数宽度σ均为20.086时,对测试集1的分类正确率最高,为79.7%;对测试集2的分类正确率为84.5%,分类计算使用的时间分别为0.108s和0.117s。对最小二乘支持向量机,高斯径向基函数宽度平方σ2取1,正则化参数γ取20.086时,对测试集1的分类正确率最高,为94.2%;对测试集2的分类正确率为89.6%,分类计算使用的时间分别为0.0638s和0.0692s。结论采用求解线性方程法寻找局部最优解的最小二乘支持向量机运算速度快,更适合心音样本的分类识别。

原文链接:http://www.cqvip.com//QK/97351A/201704/7000174952.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群