摘要:如何有效地将流形学习(Manifold learning,ML)和半监督学习(Semi-supervised learning,SSL)方法进行结合是近年来模式识别和
机器学习领域研究的热点问题。提出一种基于半监督流形学习(Semi-supervised manifold learning,SSML)的人脸识别方法,它在部分有标签信息的人脸数据的情况下,通过利用人脸数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸识别。基于公开的人脸数据库上的实验结果表明,该方法能有效地提高人脸识别的性能。
原文链接:http://www.cqvip.com//QK/92817X/200812/28901822.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)