摘要:采用支持向量机的
机器学习方法,以中文宾州树库为基础,对中文文本进行了部分语义角色标注实验。选取了主语、宾语、间接宾语、时间和地点这五种主要的语义角色,以中文PropBank 5.0中的前1 652个句子作为实验的训练集和测试集,选择路径、短语类型、谓词、头词、头词词性等八个属性作为分类特征,采用两阶段分类方法,在测试集上得到的总体语义角色标注的准确率和召回率分别为89.73%和91.26%。实验结果表明该方法对中文浅层语义分析工作是有效的。
原文链接:http://www.cqvip.com//QK/93231X/200803/26713714.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)