全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
1325 2
2018-01-10
摘要:最近,由Vapnik等提出的统计学习理论及从中发展出的支持向量机(Sup-port Vector Machines,SVM)方法,在回归算法的研究中表现出极好的性能,被认为是神经网络的替代方法,目前在时间序列预测领域也开始得到应用.SVM无论在理论还是在实践中,在非线性时间序列预测领域都具有优秀的表现和应用前景.本文将小波理论与SVM方法结合起来,互补二者优势,提出了一种称为小波支持向量机(Wavelet Support VectorMachines,WSVM)的新的机器学习方法.该方法引入小波基函数来构造SVM的核函数,得到了一种新的SVM模型,它除了具有SVM的一切优点外,还能消除数据的高频干扰,具备良好的抗噪能力.本文将这一新方法应用于经济预测中,得到了较高的预测精度,表明WSVM方法是一种很有潜力的机器学习方法.

原文链接:http://www.cqvip.com//QK/95927X/200511S/20599886.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2018-3-28 09:49:24
感谢楼主分享!
有一点不太明白,就是无论是那种时间序列预测,都是基于历史数据的回归分析吧?那么,如果历史数据有一定不可重复性,向量之间又有一些前瞻、滞后的关系……这样的关系怎么才能用在这样的预测方法里面,更精确的模拟出来呢?
感谢楼主,小弟新人刚开始学习。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2018-10-26 22:41:49
学习了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群