摘要:为利用
机器学习对集成传感器实现在线补偿,使算法具有标定未知样本和更新样本集的能力,利用协同训练的方式,对最小二乘支持向量回归机进行改进,提出基于协同训练的支持向量回归算法,使用临近法对未知样本进行标定和选择,同时对新的样本空间进行剪枝,在保证反映新样本特性的前提下尽量减少对学习模型影响小的样本数量。实验证明,该算法在泛化能力不下降的情况下提高了回归精度,运用在集成传感器的在线补偿上,能降低获的成本,并取得良好的补偿效果。
原文链接:http://www.cqvip.com//QK/90616X/201311/47825127.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)