摘要:遥感图像目标识别作为当前遥感图像应用领域中的主要研究内容,具有重要的理论意义和广泛的应用价值。近年来,深度学习成为机器学习领域的一个新兴研究方向,卷积神经网络(convolutional neural networks,CNN)是一种得到广泛研究与应用的
深度学习模型。提出一种基于CNN模型的光学遥感图像目标识别方法,在传统LeNet-5网络结构的基础上,引入ReLU激活函数代替传统的Sigmoid函数和tanh函数,使用卷积展开技术将卷积运算转换为矩阵乘法,并对网络结构进行调整优化,提高目标识别的准确性和效率。利用Quick Bird上的0.6m分辨率的遥感图像进行验证,实验结果表明,基于改进的CNN模型的方法可以取得较高的目标识别准确率和效率。
原文链接:http://www.cqvip.com//QK/94755X/201608/670040536.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)