摘要:针对现代复杂的化工生产过程,提出一种基于
神经网络的故障诊断方法。并分别将典型的BP算法和改进后的BP算法用于TE(Tennessee Eastman)模型的故障诊断中。经过诊断结果的比较,得出标准的BP算法在实际应用中具有收敛速度慢等缺点;自适应学习速率动量梯度下降的BP算法以及用L-M(Levenberg-Marquardt)法先对BP网络进行优化的BP算法具有收敛速度快、不易陷入局部极小值等优点,其中又以L-M优化BP算法效果最好。结合rIE模型的仿真结果可以看出,L-M优化BP算法在工业实际中具有很大的优势。
原文链接:http://www.cqvip.com//QK/98133A/200601/20973200.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)