摘要:为解决直驱风力发电机主轴后轴承内圈轻微损伤故障诊断问题,针对实际工程中振动信号的复杂特性,提出一种基于改进经验模态分解(empirical mode decomposition,EMD)和数据分箱的特征提取算法。将信号进行改进经验模态分解,得到一系列平稳的本征模函数(intrinsic mode function,IMF)。对分解后的信号提取均值、方差等幅域参数特征,并根据参数有效性选择部分参数组成特征矩阵。选用等宽分箱方法,用箱内数据均值代替箱体数据,将特征矩阵进行平滑处理。经验证,该方法能准确提取实际工程信号中的有效特征,并从特征选择的角度较好解决了分类器代价敏感问题,减少了
机器学习模型的过拟合现象。
原文链接:http://www.cqvip.com//QK/90702A/201703/672613460.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)