全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
591 0
2018-01-12
摘要:现有基于机器学习的道路分割方法存在当训练样本和目标场景样本分布不匹配时检测效果下降显著的缺陷。针对该问题,该文提出一种基于深度卷积网络和自编码器的场景自适应道路分割算法。首先,采用较为经典的基于慢特征分析(SFA)和GentleBoost的方法,实现了带标签置信度样本的在线选取;其次,利用深度卷积神经网络(DCNN)深度结构的特征自动抽取能力,辅以特征自编码器对源-目标场景下特征相似度度量,提出了一种采用复合深度结构的场景自适应分类器模型并设计了训练方法。在KITTI测试库的测试结果表明,所提算法较现有非场景自适应道路分割算法具有较大的优越性,在检测率上平均提升约4.5%。

原文链接:http://www.cqvip.com//QK/91130A/201702/671162664.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群