摘要:微博情感分析对于商业事务和政治选举等应用非常重要。传统的做法主要基于浅层机器学习模型,对人工提取的特征有较大的依赖,而微博情感特征往往难以提取。深度学习可以自动学习层次化的特征,并被用于解决情感分析问题。随着新的深度学习技术的提出,人们发现只要提供足够多的监督数据,就能训练出好的深度模型。然而,在微博情感分析中,通常监督数据都非常少。微博中广泛存在着弱监督数据。该文提出基于弱监督数据的“预训练—微调整”训练框架(distant pretrain-finetune),使用弱监督数据对深度模型进行预训练,然后使用监督数据进行微调整。这种做法的好处是可以利用弱监督数据学习到一个初始的模型,然后利用监督数据来进一步改善模型并克服弱监督数据存在的一些问题。我们在新浪微博数据上进行的实验表明,这种做法可以在监督数据较少的情况下使用
深度学习,并取得比浅层模型更好的效果。
原文链接:http://www.cqvip.com//QK/96983X/201703/672685426.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)