摘要:提出一种应用粗糙集(RS)和支持向量机(SVM)对汽轮发电机组故障诊断的模型。将采集到的振动信号进行傅立叶变换得到频谱特征,然后使用粗糙集进行知识约简去除冗余属性,得到决策表,将决策表作为支持向量机分类器的训练样本。通过学习,使构建的SVM机器能反映属性特征和故障类型的映射关系以达到故障诊断的目的。测试结果表明,应用粗糙集约简和SVM
机器学习是一种有效的诊断方法,它能使诊断速度加快,而且诊断结果简单有效,有推广应用的价值。
原文链接:http://www.cqvip.com//QK/92371A/200802/26979528.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)