Evidence at the zip code level
We also examine the behaviour of debt and defaults at an aggregated zip code level in order to relate our findings to prior studies that use geographically aggregated data. Because we also have access to individual data, our analysis can provide important insights into the relation between individual and geographically aggregated outcomes, shedding light on the mechanism through which credit growth affects other economic variables. We sort zip codes into quartiles based on the fraction of subprime individuals (those with credit score below 660) living in a zip code. Figure 5 illustrates the growth of mortgage credit in each of the zip code quartiles. Quartile 4 (with the highest fraction of subprime borrowers) zip codes exhibit the highest mortgage credit growth, consistent with prior studies (Mian and Sufi 2009). However, using individual-level data underlying those aggregates reveals that the most rapid growth in mortgage balances was among prime borrowers living in those zip codes. This is true for all zip code quartiles. This suggests that the fraction of subprime individuals captures variation across zip codes that is not necessarily related to the behaviour of prime or subprime borrowers specifically.
Figure 5 Zip code-level per capita mortgage debt-growth for prime (red) and subprime (blue) borrowers by quartile of share of subprime in 2001
A. Quartile 1
B. Quartile 2
C. Quartile 3
D. Quartile 4
Note: ‘prime’ indicates an Equifax risk score above 660, and ‘subprime’ indicates Equifax risk score below 660. Based on 8 quarter lagged individual credit scores.
Source: Authors' calculations based on the FRBNY CCP/Equifax Data.
To shed some light on why both prime and subprime borrowers in Quartile 4 zip codes experienced higher credit growth than those in lower quartiles, we explore other demographic and economic factors that could explain the variation in borrowing behaviour across zip codes with different fractions of subprime borrowers.
Figure 6 shows that the zip codes with the largest subprime population are much younger than the other zip codes. This is not surprising, given our findings with individual data. Based on our calculations, the difference in the age distribution alone can account for 84% of the difference in mortgage balance growth between Quartile 1 and Quartile 4 (44% and 43% for Quartiles 2 and 3 respectively). Moreover, low-education borrowers and minorities are also over represented in zip codes with relatively large subprime populations. The positive correlation between the concentration of subprime borrowers and the severity of the 2007-09 recession found in previous research may be driven by the high prevalence of these business cycle-sensitive populations in those zip codes.
Figure 6 The age distribution of ZIP-code quartiles based on the fraction of sub-prime population
Note: Sub-prime indicates below score 660
Source: Authors' calculations based on the FRBNY CCP/Equifax Data.
The role of mortgage investors
Our finding that borrowers in the middle and at the top of the credit score distribution disproportionally default during the crisis is somewhat puzzling, as these borrowers historically exhibited very low default rates on any type of debt, as well as very low foreclosure rates. To gain insight on the driving force behind defaults by borrowers with relatively high credit scores, we explore the role of real estate investors. Using our data, we identify real estate investors as borrowers who hold two or more first mortgages, following Haughwout et al. (2011). There are four main reasons that may lead real estate investors to display higher default rates than other borrowers with similar credit scores.
First, mortgages contracted for investment purposes typically carry a premium over mortgages for primary residences.
Second, if investors are motivated by the prospect of capital gains, they have an incentive to maximise leverage, as this strategy increases the potential gains from holding a property, while the potential losses are limited, especially in states in which foreclosure is non-recourse.
Third, only the primary residence is protected in personal bankruptcy, via the homestead exemption (Li 2009). Thus, a financially distressed borrower could potentially file for Chapter 7 bankruptcy and discharge unsecured debt using non-exempt assets to avoid missing payments on the mortgage for their primary residence.
Finally, the financial and psychological costs of default for mortgage borrowers who reside in the home are typically quite substantial, as the resulting relocation would generate moving and storage costs, and possibly cause difficulties for household members in reaching their workplace or their school.
We find that real estate investors play a critical role in the rise in mortgage debt specifically for the middle and the top of the credit score distribution. The fraction of borrowers with two or more first mortgages rises from about 10% in 2004 to over 15% by the end of 2007 for the top three quartiles, whereas it is quite stable for the bottom quartile (Figure 7). Over the same period, the share of mortgage balances held by investors rises from 20%-25% to approximately 35% for the top three quartiles whereas the bottom quartile experiences only a 5% rise from a much lower level.
Figure 7 Fraction of borrowers with (top panel) and share of mortgage balances held by borrowers with (bottom panel) two or more first mortgages by quartile, of the 8-quarter lagged Equifax Risk Score
Source: Authors' calculations based on the FRBNY CCP/Equifax Data.
More importantly, we also find that the rise in defaults is mostly driven by real estate investors. Figure 8 plots the share of new delinquencies and foreclosures accounted for by real estate investors.
Figure 8 Investor share of 90+ days delinquencies (top panel) and foreclosures (bottom panel) by quartile, of the 8-quarter lagged Equifax Risk Score
Source: Authors' calculations based on the FRBNY CCP/Equifax Data.
The investor share of new delinquencies was close to 15% for all credit score quartiles throughout the credit boom and increases to 25%, 35% and 40% between 2006 and 2009 for credit score quartiles 2-4, respectively. The rise in the investor share of foreclosures is even more dramatic.
In zip codes with a high fraction of subprime borrowers, the share of mortgage balances held by prime investors rises more than in those with smaller subprime populations, and so does their share of defaults. This pattern may explain the larger swing in housing values experienced by these zip codes.
References
Adelino, M, A Schoar, and F Severino (2015), “Loan Originations and Defaults in the Mortgage Crisis: The Role of the Middle Class”, NBER Working Paper 20848.
Adelino, M, A Schoar, and F Severino (2017), “Dynamics of Housing Debt in the Recent Boom and Great Recession”, NBER Working Paper 23502.
Albanesi, S, G De Giorgi, and J Nosal (2017), “Credit Growth and the Financial Crisis: A New Narrative”, NBER Working Paper 23740.
Foote, C L, L Loewenstein, and P S Willen (2016), “Cross-sectional patterns of mortgage debt during the housing boom: evidence and implications”, NBER Technical Report 22985.
Haughwout, A, D Lee, J S Tracy, and W Van der Klaauw (2011), “Real estate investors, the leverage cycle, and the housing market crisis”, Federal Reserve Bank of New York Staff Reports, no. 514.
Li, W (2009), “Residential housing and personal bankruptcy”, Business Review 2, 19-29.
Mian, A, K Rao, and A Sufi (2013), “Household Balance Sheets, Consumption,and the Economic Slump”, The Quarterly Journal of Economics, 128 (4), 1687-1726.
Mian, A, and A Sufi (2009), “The Consequences of Mortgage Credit Expansion: Evidence from the US Mortgage Default Crisis”, The Quarterly Journal of Economics, 124 (4), 1449-1496.
Mian, A, and A Sufi (2010), “The Great Recession: Lessons from Microeconomic Data”, The American Economic Review, 100 (2), 51-56.
Mian, A, and A Sufi (2011), “House Prices, Home Equity-Based Borrowing, and the US Household Leverage Crisis”, The American Economic Review, 101 (5), 2132-2156.
Mian, A, and A Sufi (2014), “What explains the 2007-2009 drop in employment?”, Econometrica, 82 (6), 2197-2223.
Mian, A, A Sufi, and F Trebbi (2015), “Foreclosures, house prices, and the real economy”, The Journal of Finance, 70 (6), 2587-2634.
Mian, A R, and A Sufi (2016), “Household debt and defaults from 2000 to 2010: The credit supply view”, manuscript.