摘要:核函数方法广泛应用于人工神经网络和支持向量机等机器学习领域,该方法的采用有效地避免了特征空间中的维数灾难的问题,改善了学习机的分类性能。但是核函数的选择及新的核函数构造一直
机器学习领域的核心问题,直接关系到学习机性能的好坏。然而,这个方向的研究成果不多。以支持向量机为例,通过对核矩阵一些特性的计算和研究,从理论上对常用的核函数性能进行了预测。在此基础上,通过实验仿真证实了通过优选后的核函数所组成的混合核函数对分类性能的改善。在加权系数选择合适的情况下,学习机的识别率甚至可以达到100%。所以,不但构造出了性能优异的学习机,而且为核函数的选择提供了参考。
原文链接:http://www.cqvip.com//QK/91690X/200908/29624584.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)