摘要:针对机器学习领域的人脸跟踪研究,其人脸首帧初始化由人工手动标注的问题,提出了一种基于深度学习的人脸跟踪自动初始化首帧方法。通过建立栈式稀疏自编码
神经网络,对大量未标注的样本采用近似恒等的方法计算各隐层节点并运用反向传播法进行权值微调。预训练网络之后,连接softmax分类器,再用少量已标注样本对softmax分类器进行有监督训练,从而形成一个能进行人脸跟踪首帧自动初始化的分类器。结果表明,该方法显著提高了人脸跟踪中首帧初始化的效率,识别准确率达到92%,基本满足了人脸首帧自动初始化的要求。
原文链接:http://www.cqvip.com//QK/94293X/201704/671903119.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)