全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
717 0
2018-01-29
摘要:单幅图像超分辨率算法的主要任务是根据一幅给定的低分辨率图像重建出对应的高分辨率图像。大多数基于外部样例学习的单幅图像超分辨率算法首先提取低分辨率样例图像块和高分辨率样例图像块的图像特征,然后用机器学习的某种方法学习它们之间的非线性映射关系,最后将重叠的高分辨率图像块聚合生成高分辨率图像。对基于深度学习的端到端学习架构进行改进,端到端的超分辨率学习架构无需预处理和图像聚合过程;通过加深和改进深度学习网络结构,我们提出了一种新的基于卷积神经网络的图像超分辨率算法。与其他优秀的图像超分辨率算法进行对比,实验结果证明了该算法的优越性。http://www.cqvip.com//QK/85451X/201601/668430514.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群