摘要:为解决中文标准文献的自然语言处理问题,对Hierarchical Log-Bilinear英文统计语言模型算法进行了改进,构建了适用于中文语言的模型。采用深度神经网络技术,将无监督学习与有监督学习相结合,利用多层受限玻尔兹曼机训练文本词向量,并将训练好的词向量输入到前馈神经网络进行有监督训练,完成对中文标准文献内容的
机器学习。对100多万条标准题录数据进行训练的实验结果表明,该方法能有效提高语言模型的学习能力。
原文链接:http://www.cqvip.com//QK/95788B/201502/664022292.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)