摘要:对用户进行准确分类对提高客户定制服务的质量具有重要作用,但用户出于隐私保护的考虑,经常不配合网络服务商,拒绝提供个人信息,如地理位置信息、兴趣爱好等。为解决这一问题,在保护用户隐私的前提下,通过分析网络层、应用层等多层网络流量,然后利用K-means聚类、随机森林算法等
机器学习方法,预测出用户的地理位置类型(比如公寓、校园等)和兴趣爱好,并分析地理位置类型与用户兴趣爱好的关系,以提高对用户分类的准确性。实验结果表明,此方案可以自适应地划分用户所属用户类型和地理位置类型,通过关联用户的地理位置类型和用户类型提高了用户行为分析的准确性。
原文链接:http://www.cqvip.com//QK/94832X/201703/671462254.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)