摘要:多示例学习是继监督学习、非监督学习、强化学习后的又一
机器学习框架。将多示例学习和非监督学习结合起来,在传统非监督聚类算法K-means的基础上提出MIK-means算法,该算法利用混合Hausdorff距离作为相似测度来实现数据聚类。实验表明,该方法能够有效揭示多示例数据集的内在结构,与K-means算法相比具有更好的聚类效果。http://www.cqvip.com//QK/95200X/200922/32170076.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)