摘要:针对BP神经网络在实际气象预报应用中,网络结构难以确定以及网络极易陷入局部解问题,提出一种基于神经网络的粒子群集成学习算法的气象预报模型,以BP算法为基本框架,在学习过程中引入粒子群算法,优化设计神经网络的网络结构和初始连接权,获得一组合适网络结构和初始连接权,再进行新一轮BP神经网络训练,获得一批独立的神经网络个体,以“误差绝对值和最小”为最优准则,采用线性规划方法计算各集成个体的权系数,生成
神经网络的输出结论,以此建立短期气候预测模型。以广西的月降水量进行实例分析,计算结果表明该方法学习能力强、泛化性能高,能够有效提高系统预测的准确率。
原文链接:http://www.cqvip.com//QK/92292A/200806/29128567.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)