全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
651 0
2018-01-15
摘要:针对目前浅层机器学习预测方法所需学习和训练的样本过大及拟合复杂数据能力弱等不足,提出一种基于深度学习思想的深度信任支持向量回归(support vector regression,SVR)的耕地面积预测方法.首先,搭建由1层高斯分布函数显层节点的RBM、多层隐层RBM和1层支持向量回归机构成的深度信任支持向量回归预测模型;其次,选取较为合适和易得的训练数据,通过样本训练和测试确定预测模型的具体结构参数;最后,通过实验将深度信任支持向量回归耕地面积预测方法与其他典型的耕地面积预测算法相比较.结果表明,提出的耕地面积预测方法可行、有效,在相同的数据和平台下,其预测精度高于其他具有代表性的耕地面积预测算法.

原文链接:http://www.cqvip.com//QK/90407A/201601/668345200.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群