全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
509 0
2018-01-15
摘要:CBIR系统由于受图像低层特征的限制,制约了它的检索效果。机器学习和统计方法是一种有效的提高检索性能的方法,但通常需要大量的训练样本才能达到满意的检索精度。提出一种理想的距离度量函数,在对图像进行简单分类并提供少量训练样本的基础上,通过类的距离度量矩阵M的学习来考虑分量之间的相关性。这个度量导入二次最佳化问题的解,将训练样本类结构的倾斜最小化。试验结果表明,该方法能在学习样本极少的情况下提高检索的性能。

原文链接:http://www.cqvip.com//QK/97364X/200702/24705903.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群