全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
835 0
2018-01-10
摘要:该文在分析总结影响微博用户推荐的四大类信息,包括用户的内容信息、个人信息、交互信息和社交拓扑信息的基础上,提出一个基于排序学习的微博用户推荐框架,排序学习的本质是用机器学习中的分类或回归方法解决排序问题,该框架可以综合各类信息特征进行用户推荐。实验结果表明:(1)融合多个特征综合推荐通常可以取得更好的推荐效果;(2)基于用户个人信息、交互信息、社交拓扑信息的推荐效果均好于基于用户内容的推荐效果。

原文链接:http://www.cqvip.com//QK/96983X/201304/46842386.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群