摘要:基于图的半监督学习的一个关键问题是:图上顶点之间的距离度量的有效性问题。为了解决这个问题,提出了基于图的半监督学习的距离度量改进方法。通过在现有密度敏感的距离度量方案中添加补偿参数的方法,使得改进的距离度量方案不但能够有效地扩大不同类别的高密度区域样本间的距离,同时还能缩小相同类别中样本之间的距离。将改进的距离度量方案应用到聚类算法中,来验证改进的距离度量方案的有效性。实验结果表明:改进的距离度量方法能够有效地扩大不同类别间距离,增强类内聚合度。
原文链接:http://www.cqvip.com//QK/94259A/201402/49720210.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)