全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
981 0
2018-01-15
摘要:为弥补传统飞机翼型设计周期长、代价高的缺点,将CST翼型参数化方法,与机器学习中的高斯过程回归方法相结合,通过对已有的翼型数据的学习,实现对未知翼型气动性能或者外形数据的快速准确预测。选取一组NACA四位族翼型,获得其CST参数描述数据,并分别计算其在一定条件下的升力系数、阻力系数和压力分布数据。利用这些数据对高斯过程回归模型进行训练,实现了翼型的快速正设计以及反设计系统。并将实验结果与采用NACA翼型参数表示法得到的预测结果进行了对比。实验结果表明,基于CST参数化方法的翼型快速设计准确度高、速度快,具有很大的应用价值。

原文链接:http://www.cqvip.com//QK/90843X/201105/39539230.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群