全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
850 0
2018-01-15
摘要:模拟电路故障的多样性使得神经网络训练样本数量增加,BP网络结构趋于复杂,训练速度降低;针对反向传播神经网络(BPNN)学习收敛速度慢、易陷入局部极小值等问题,提出了基于主成分分析(PCA)与概率神经网络(PNN)相结合的模拟电路故障诊断方法;通过主成分分析法(Principal Component Analysis)提取特征数据进行降维处理,再结合概率神经网络(Probabilistic Neural Networks)对电路故障进行分类;实例说明采用PCA和PNN结合对故障数据处理,可以大大的提高故障诊断分类的准确性。

原文链接:http://www.cqvip.com//QK/97801A/200812/29083280.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群