摘要:针对预测样本数量有限的问题,提出了对训练样本和要预测的样本先聚类、后分别训练和预测的方法。利用网络特性,对复杂信息进行预先分类,使后续信息处理和映射更精确迅速,采用ELMAN神经网络和SOM
神经网络的组合提高预测精度。通过对天气和疾病的预测仿真实验表明,该方法增强了网络的局部泛化能力,预测精度高于BP网络和单一采用EMAN网络或SOM网络的精度。
原文链接:http://www.cqvip.com//QK/95985X/200412/11815142.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)