摘要:手写体数字识别是多年来的研究热点,也是字符识别中的一个特别问题。由于手写体数字字体变化很大,传统的识别方法很难达到高的识别率。针对传统的数字识别方法的复杂性和局限性,提出了一种基于BP神经网络的手写体数字的识别方法。该方法在提取手写体数字点特征、笔划密度特征基础上,利用改进的BP
神经网络进行训练识别。经实验,识别率达94%。实验结果表明,该方法对手写体数字识别效果良好,不仅简化了传统识别的繁杂性,而且提高了识别的准确性。
原文链接:http://www.cqvip.com//QK/97969A/200806/27415945.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)