摘要:由于语音识别中朵用标准BP算法存在的训练速度慢、容易陷入局部极小等问题,提出一种基于稳定、快速的Levenberg-Marquardt算法的
神经网络语音识别方法,主要包括语音信号预处理、特征提取、网络结构优化设计、网络学习训练和语音识别等过程。其中网络隐含层节点数的选取采用黄金分割优选法。试验仿真表明,LM算法明显提高了网络训练速度,减少了训练时间,其效果优越于标准BP算法。
原文链接:http://www.cqvip.com//QK/95033X/200614/22423914.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)