摘要:结合社会网络分析技术与信誉评估技术,提出一种基于机器学习的互联网电话垃圾邮件(SPIT)可疑度评估方法(MLBRE).该方法依据用户的历史行为建立通信行为网络模型,使用社会网络分析方法半自动化地对部分用户进行可疑度评估,产生相应的训练集,再使用支持向量机(SVM)的
机器学习方法全自动化地对全体用户进行可疑度评估.实验结果表明:本方法在保持较高准确率(93.98%)的同时,具有较低的漏报率(0.95%).
原文链接:http://www.cqvip.com//QK/90344A/2013S2/1005563224.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)