摘要:实际的分类问题往往都是不平衡分类问题,采用传统的分类方法,难以得到满意的分类效果。为此,十多年来,人们相继提出了各种解决方案。对国内外不平衡分类问题的研究做了比较详细地综述,讨论了数据不平衡性引发的问题,介绍了目前几种主要的解决方案。通过仿真实验,比较了具有代表性的重采样法、代价敏感学习、训练集划分以及分类器集成在3个实际的不平衡数据集上的分类性能,发现训练集划分和分类器集成方法能较好地处理不平衡数据集,给出了针对不平衡分类问题的分类器评测指标和将来的工作。
原文链接:http://www.cqvip.com//QK/92035A/200902/30260067.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)