全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
594 0
2018-01-22
摘要:多标记学习主要用于解决单个样本同时属于多个类别的问题.传统的多标记学习通常假设训练数据集合有大量有标记的训练样本.然而在许多实际问题中,大量训练样本中通常只有少量有标记的训练样本.为了更好地利用丰富的未标记训练样本以提高分类性能,提出了一种基于正则化的归纳式半监督多标记学习方法——MASS.具体而言,MASS首先在最小化经验风险的基础上,引入两种正则项分别用于约束分类器的复杂度及要求相似样本拥有相似结构化多标记输出,然后通过交替优化技术给出快速解法.在网页分类和基因功能分析问题上的实验结果验证了MASS方法的有效性.

原文链接:http://www.cqvip.com//QK/94913X/201206/42297634.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群