摘要:恶意代码分类是恶意代码分析和入侵检测领域中的核心问题.现有分类方法分析效率低,准确性差,主要原因在于行为分析原始资料规模大,噪声高,随机因素干扰.针对上述问题,以恶意代码行为序列报告作为基础,在分析随机因素及行为噪声对恶意代码行为特征和操作相似性的干扰之后,给出一个系统调用参数有效窗口模型,通过该模型加强行为序列的相似度描述能力,降低随机因素的干扰.在此基础上提出一种基于朴素贝叶斯
机器学习模型和操作相似度窗口的恶意代码自动分类方法.设计并实现了一个自动恶意代码行为分类器原型MalwareFilter.使用真实恶意代码生成的行为序列报告对原型系统进行评估,通过实验证明了该方法的有效性,结果表明,该方法通过操作相似度窗口提高了训练和分类过程的性能和准确度.
原文链接:http://www.cqvip.com//QK/94913X/201402/48436795.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)