全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
558 0
2018-01-25
摘要:传统的文本信息抽取算法通常基于词典、规则或其他模型实现,但由于词典建立困难、规则设定模糊或模型结构单一等原因,信息抽取的准确性通常较低。针对传统的文本信息抽取算法存在的多种不足,提出一种基于混合模型的文本信息抽取算法。该算法融合了多种信息抽取方法,引入支持向量机对信息进行分类,利用s型函数拟合调整模型参数,并采用数据平滑技术优化模型概率空间。实验结果表明,与传统的文本信息抽取算法相比,该算法信息抽取的精确度和召回率明显提高,具有较好的可行性。

原文链接:http://www.cqvip.com//QK/90976X/201511/666720831.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群