全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
660 0
2018-01-25
摘要:为了解决在信息提取中,召回率和精度都不高的问题,提出了改进的HMM(Hidden Markov Models)模型,该模型采用一种新的文本分块技术。通过文本的语义特征和结构特征,抽取具有特征的状态,并在此基础上,抽取剩余的无特征的状态改进HMM,测试了由卡耐基梅隆大学数据搜索引擎研究小组所提供的100篇计算机科学文件头部。结果表明,与基于字词和传统的HMM方法相比,召回率和精确率分别达到了91.99%和94.79%。

原文链接:http://www.cqvip.com//QK/97462A/200904/31171264.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群