摘要:为了解决在信息提取中,召回率和精度都不高的问题,提出了改进的HMM(Hidden Markov Models)模型,该模型采用一种新的文本分块技术。通过文本的语义特征和结构特征,抽取具有特征的状态,并在此基础上,抽取剩余的无特征的状态改进HMM,测试了由卡耐基梅隆大学数据搜索引擎研究小组所提供的100篇计算机科学文件头部。结果表明,与基于字词和传统的HMM方法相比,召回率和精确率分别达到了91.99%和94.79%。
原文链接:http://www.cqvip.com//QK/97462A/200904/31171264.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)